001),第21位丝氨酸残基磷酸化增加了2.1倍(P<0.05),而磷酸化的增加伴随着转录活性的下降。与PPARα磷酸化水平的提高相对应,细胞外信号调节激酶ERK1和ERK2的磷酸化也分别增加了14倍(P<0.001)和4.1倍(P<0.01),提示ERK-MAPK信号转导通路可能介导了PPARα的磷酸化。与此相呼应,ERK1/2抑制剂的处理使得AR诱导的PPARα转录活性的抑制被显著改善(达到对照的78%,P<0.001),而P13K、p38、JNK及PKC抑制剂处理则没有此作用。特别重要的是,用25 为什么 mM浓度的葡萄糖处理AML12细胞也获得了与上述效应相似的结果。与在5
mM葡萄糖浓度下培养相比,25 mM葡萄糖的处理使得AML12细胞的AR的表达显著上调,同时引起PPARα/δ转录活性下降和ERK1/2及PPARα的磷酸化程度显著增加。用AR siRNA抑制AR表达后,25 mM葡萄糖浓度处理下的AML12中PPARα的磷酸化程度显著降低。 我们采用腹腔注射链脲佐菌素(streptozotoxin,STZ)在C57BL/6小鼠中诱导Ⅰ型糖尿病。在STZ—糖尿病小鼠中,AR抑制剂处理或敲除AR基因,导致肝组织ERK1/2和PPARα的去磷酸化,而且AR抑制剂处理使ACO的mRNA水平显著上升(44%,P<0.01),载脂蛋白ApoC3的mRNA水平显著下降(34.8%,P<0.01)。与此同时,血甘油三酯(TG)和游离脂肪酸水平也显著下降。另一方面,在Ⅱ型糖尿病小鼠模型db/db小鼠中,AR抑制剂的处理也导致肝组织ERK1/2和PPARα显著的去磷酸化,同时伴随着ACO和载脂蛋白ApoA5的mRNA水平的显著上升(ACO上升92%,P<0.05;ApoA5上升73%,P<0.05)。与此相对应,肝TG和血TG水平显著下降,同时肝组织的油红染色结果也说明了AR抑制剂处理显著降低了db/db小鼠肝脏中性脂肪含量。 综上所述,AR在肝脏中可对PPARα的磷酸化及转录活性进行调控,进而影响动物体脂质代谢。AR对PPARα的调控作用在很大程度上是由ERK1/2信号转导通路介导的。
慢性乙型肝炎(Chronic Hepatitis B,CHB)是一种严重危害人类健康的病毒性传染病。我国是乙肝病毒(Hepatitis B Virus,HBV)高流行区,一般人群的乙型肝炎表面抗原(Hepatitis B surface Antigen,HBsAg)阳性率为9.09%,约有1.1~1.2亿为HBV携带者,其中部分有不同程度的肝细胞受损,并可能发展成肝硬化和肝癌。 干扰素(Interferon,IFN)是细胞和机体受到病毒感染,或者受核酸、细菌内毒素和促细胞分裂素等作用后,由淋巴细胞分泌的一种细胞因子,可分为α、β、γ三类。IFN-α具有抗病毒及免疫调节的双重作用,是临床常用的抗HBV药物。 目前用于临床的普通IFN-α半衰期只有4~6h,患者不得不接受频繁的皮下注射(疗程至少半年),但其长期疗效并不确切。重组人白蛋白融合干扰素α-2b融合蛋白( recombinant human serum albumin-interferon-α-2b
fusion protein ,rHSA-IFNα-2b)是运用基因重组技术开发出来的一种新型长效干扰素,其在体内的半衰期显著长于IFNα-2b和聚乙二醇干扰素(Pegylated Interferon,PEG-IFN)。rHSA-IFNα-2b注射频率可以从IFNα-2b的每天一次或每周3次减少到每两周一次,这将极大地方便患者。同时长效干扰素所提供的较为稳定的血药浓度也将提高疗效,降低不良反应。 动物实验及临床试验研究已证明rHSA-IFNα-2b可发挥有效的抗丙肝病毒(Hepatitis
C Virus,HCV)作用,但是否同样具有抗HBV作用还有待进一步研究。本研究拟通过探索rHSA-IFNα-2b对体外2.2.15细胞(HepG2 BLU9931 C646 2.2.15 cell)HBsAg、HBeAg(Hepatitis B e Antigen)分泌、HBV DNA复制的影响,及对鸭乙型肝炎动物模型的肝功能影响和对鸭乙肝病毒(DHBV)DNA的抑制作用,来系统考察rHSA-IFNα-2b的抗HBV作用,为rHSA-IFNα-2b治疗CHB的临床试验提供依据。 IFN-α主要通过激动特异性细胞膜受体来发挥抗病毒作用。当IFN-α与靶细胞表面的特异性受体结合后,通过JAK-STAT信号通路,触发细胞内一系列酶活化,产生一组抗病毒蛋白,包括2′-5′-寡腺苷酸合成酶(2′-5′-oligoadenylate synthetase,2′-5′-OAS)、磷酸二脂酶(phosphodiesterase,PDE)及蛋白激酶(protein Kinase,PK)。OAS可催化2′-5′-寡核苷酸(2′-5′-oligoadenylate,2-5A)合成,激活内源性核酸内切酶,抑制病毒mRNA信息的传递,从而阻止病毒在宿主细胞内繁殖。本研究同时拟通过考察rHSA-IFNα-2b对抗病毒蛋白OAS的影响,及与Jak-Stat通路、p38-MAPK通路的关联,来阐述其发挥抗HBV作用的机制。 (一)体外药效学及机制研究: 本课题选用2.2.15细胞作乙型肝炎体外模型,首先采用MTT法考察rHSA-IFNα-2b对2.2.15细胞的毒性作用。选择含8个实验浓度梯度rHSA-IFNα-2b(500、250、125、62.5、31.2、15.6、7.8、3.9nmol/L)的培养液,培养2.2.15细胞9天后,加入含有400mg/L MTT的培养液孵育4 h,弃MTT液并加入DMSO,用酶标仪测定吸光度(absorbance,A)值,来考察药物对细胞的破坏程度。结果发现,rHSA-IFNα-2b对2.2.15细胞形态仅有轻微的损坏,且细胞破坏率与细胞形态变化无明显关系,TC50>500 nmol/L,远高于其有效剂量。 我们选用含三个不同rHSA-IFNα-2b浓度梯度(0.075,0.3,1.2 nmol/L)的培养液来培养2.2.15细胞,每3天更换含有药物的培养液,分别收集第3、6、9天上清液。细胞上清液中的HBsAg、HBeAg采用ELISA法检测,用酶标仪测定其A值,并根据标准品A值折算得出样品浓度。细胞上清液中的HBV DNA浓度通过实时荧光定量PCR测定,最后通过标准品的CT值来计算样品DNA的浓度。实验结果发现,rHSA-IFNα-2b明显抑制HBsAg、HBeAg分泌,其中浓度在0.075~1.2 nmol/L范围内时,其对HBsAg的抑制作用呈现浓度依赖性;rHSA-IFNα-2b能抑制培养上清液中HBV DNA复制,也呈明显浓度依赖性。IFNα-2b与rHSA-IFNα-2b作用无显著性差异。 随后,我们用rHSA-IFNα-2b(0.075、0.3、1.2 nmol/L)作用2.2.15细胞3天后,收集细胞并提取总RNA,用RT-PCR方法考察STAT1、ISGF3、2′-5′-OAS的变化;给予JAK抑制剂或p38抑制剂之后1h再给予rHSA-IFNα-2b(0.